3.674 \(\int (e \cos (c+d x))^{5/2} \sqrt{a+i a \tan (c+d x)} \, dx\)

Optimal. Leaf size=132 \[ -\frac{2 i \sqrt{a+i a \tan (c+d x)} (e \cos (c+d x))^{5/2}}{5 d}-\frac{16 i \sec ^2(c+d x) \sqrt{a+i a \tan (c+d x)} (e \cos (c+d x))^{5/2}}{15 d}+\frac{8 i a \sec ^2(c+d x) (e \cos (c+d x))^{5/2}}{15 d \sqrt{a+i a \tan (c+d x)}} \]

[Out]

(((8*I)/15)*a*(e*Cos[c + d*x])^(5/2)*Sec[c + d*x]^2)/(d*Sqrt[a + I*a*Tan[c + d*x]]) - (((2*I)/5)*(e*Cos[c + d*
x])^(5/2)*Sqrt[a + I*a*Tan[c + d*x]])/d - (((16*I)/15)*(e*Cos[c + d*x])^(5/2)*Sec[c + d*x]^2*Sqrt[a + I*a*Tan[
c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.288011, antiderivative size = 132, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {3515, 3497, 3502, 3488} \[ -\frac{2 i \sqrt{a+i a \tan (c+d x)} (e \cos (c+d x))^{5/2}}{5 d}-\frac{16 i \sec ^2(c+d x) \sqrt{a+i a \tan (c+d x)} (e \cos (c+d x))^{5/2}}{15 d}+\frac{8 i a \sec ^2(c+d x) (e \cos (c+d x))^{5/2}}{15 d \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(e*Cos[c + d*x])^(5/2)*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(((8*I)/15)*a*(e*Cos[c + d*x])^(5/2)*Sec[c + d*x]^2)/(d*Sqrt[a + I*a*Tan[c + d*x]]) - (((2*I)/5)*(e*Cos[c + d*
x])^(5/2)*Sqrt[a + I*a*Tan[c + d*x]])/d - (((16*I)/15)*(e*Cos[c + d*x])^(5/2)*Sec[c + d*x]^2*Sqrt[a + I*a*Tan[
c + d*x]])/d

Rule 3515

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(d*Co
s[e + f*x])^m*(d*Sec[e + f*x])^m, Int[(a + b*Tan[e + f*x])^n/(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e,
f, m, n}, x] &&  !IntegerQ[m]

Rule 3497

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(d*
Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n)/(a*f*m), x] + Dist[(a*(m + n))/(m*d^2), Int[(d*Sec[e + f*x])^(m + 2)*(
a + b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && GtQ[n, 0] && LtQ[m, -
1] && IntegersQ[2*m, 2*n]

Rule 3502

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(d
*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n)/(b*f*(m + 2*n)), x] + Dist[Simplify[m + n]/(a*(m + 2*n)), Int[(d*Sec[
e + f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[n
, 0] && NeQ[m + 2*n, 0] && IntegersQ[2*m, 2*n]

Rule 3488

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(d
*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^n)/(a*f*m), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] &
& EqQ[Simplify[m + n], 0]

Rubi steps

\begin{align*} \int (e \cos (c+d x))^{5/2} \sqrt{a+i a \tan (c+d x)} \, dx &=\left ((e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{(e \sec (c+d x))^{5/2}} \, dx\\ &=-\frac{2 i (e \cos (c+d x))^{5/2} \sqrt{a+i a \tan (c+d x)}}{5 d}+\frac{\left (4 a (e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}\right ) \int \frac{1}{\sqrt{e \sec (c+d x)} \sqrt{a+i a \tan (c+d x)}} \, dx}{5 e^2}\\ &=\frac{8 i a (e \cos (c+d x))^{5/2} \sec ^2(c+d x)}{15 d \sqrt{a+i a \tan (c+d x)}}-\frac{2 i (e \cos (c+d x))^{5/2} \sqrt{a+i a \tan (c+d x)}}{5 d}+\frac{\left (8 (e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{e \sec (c+d x)}} \, dx}{15 e^2}\\ &=\frac{8 i a (e \cos (c+d x))^{5/2} \sec ^2(c+d x)}{15 d \sqrt{a+i a \tan (c+d x)}}-\frac{2 i (e \cos (c+d x))^{5/2} \sqrt{a+i a \tan (c+d x)}}{5 d}-\frac{16 i (e \cos (c+d x))^{5/2} \sec ^2(c+d x) \sqrt{a+i a \tan (c+d x)}}{15 d}\\ \end{align*}

Mathematica [A]  time = 0.336596, size = 63, normalized size = 0.48 \[ \frac{i e^2 \sqrt{a+i a \tan (c+d x)} \sqrt{e \cos (c+d x)} (-4 i \sin (2 (c+d x))+\cos (2 (c+d x))-15)}{15 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Cos[c + d*x])^(5/2)*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((I/15)*e^2*Sqrt[e*Cos[c + d*x]]*(-15 + Cos[2*(c + d*x)] - (4*I)*Sin[2*(c + d*x)])*Sqrt[a + I*a*Tan[c + d*x]])
/d

________________________________________________________________________________________

Maple [A]  time = 0.373, size = 80, normalized size = 0.6 \begin{align*}{\frac{2\,i \left ( \cos \left ( dx+c \right ) \right ) ^{2}+8\,\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) -16\,i}{15\,d \left ( \cos \left ( dx+c \right ) \right ) ^{2}} \left ( e\cos \left ( dx+c \right ) \right ) ^{{\frac{5}{2}}}\sqrt{{\frac{a \left ( i\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) \right ) }{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(d*x+c))^(5/2)*(a+I*a*tan(d*x+c))^(1/2),x)

[Out]

2/15/d*(I*cos(d*x+c)^2+4*cos(d*x+c)*sin(d*x+c)-8*I)*(e*cos(d*x+c))^(5/2)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+
c))^(1/2)/cos(d*x+c)^2

________________________________________________________________________________________

Maxima [A]  time = 3.11623, size = 200, normalized size = 1.52 \begin{align*} \frac{{\left (5 i \, e^{2} \cos \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ) - 3 i \, e^{2} \cos \left (\frac{5}{3} \, \arctan \left (\sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ), \cos \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right )\right )\right ) - 30 i \, e^{2} \cos \left (\frac{1}{3} \, \arctan \left (\sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ), \cos \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right )\right )\right ) + 5 \, e^{2} \sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ) + 3 \, e^{2} \sin \left (\frac{5}{3} \, \arctan \left (\sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ), \cos \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right )\right )\right ) + 30 \, e^{2} \sin \left (\frac{1}{3} \, \arctan \left (\sin \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right ), \cos \left (\frac{3}{2} \, d x + \frac{3}{2} \, c\right )\right )\right )\right )} \sqrt{a} \sqrt{e}}{30 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(5/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/30*(5*I*e^2*cos(3/2*d*x + 3/2*c) - 3*I*e^2*cos(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 30
*I*e^2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 5*e^2*sin(3/2*d*x + 3/2*c) + 3*e^2*sin(5
/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 30*e^2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2
*d*x + 3/2*c))))*sqrt(a)*sqrt(e)/d

________________________________________________________________________________________

Fricas [A]  time = 2.06499, size = 255, normalized size = 1.93 \begin{align*} \frac{\sqrt{2} \sqrt{\frac{1}{2}}{\left (-3 i \, e^{2} e^{\left (4 i \, d x + 4 i \, c\right )} - 30 i \, e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + 5 i \, e^{2}\right )} \sqrt{e e^{\left (2 i \, d x + 2 i \, c\right )} + e} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (-\frac{3}{2} i \, d x - \frac{3}{2} i \, c\right )}}{30 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(5/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/30*sqrt(2)*sqrt(1/2)*(-3*I*e^2*e^(4*I*d*x + 4*I*c) - 30*I*e^2*e^(2*I*d*x + 2*I*c) + 5*I*e^2)*sqrt(e*e^(2*I*d
*x + 2*I*c) + e)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(-3/2*I*d*x - 3/2*I*c)/d

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))**(5/2)*(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(5/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out